Carnegie Mellon University Language Technologies Institute

Multi-view Subword Regularization

Xinyi Wang¹ Sebastian Ruder² Graham Neubig¹

Language Technologies Institute, CMU
DeepMind

Multilingual Pretrained Models

- * Zero-shot cross-lingual transfer: fine-tune model on English, generalize to other languages
- * Utilize a single subword vocabulary constructed from monolingual data in hundreds of languages
- * These models suffer from **suboptimal subword segmentation**

English, generalize to other languages n monolingual data in hundreds of languages **nentation**

Subword Segmentation is Suboptimal

* Many low-resource languages tend to be over-segmented

Subword Segmentation is Suboptimal

excitement en **de** Auf/re/gung εν/θ/ουσι/ασμό el

Table. XLM-R segmentation of "excitement" in different languages

Mismatch in segmentation could harm cross-lingual transfer

	fr	excita/tion
	pt	excita/ção
ς	ru	волн/ение

Subword Segmentation is Suboptimal

- * Existing methods
 - * Embed words using characters (Ma et. al. 2020)
 - * Separately construct subword segmentation for each language cluster (Chung et. al. 2020)
 - * Add a phrase-level segmentation (Zhang et. al. 2020)
- * Modifying subword vocabulary requires retraining the large language model
- * What is a **computationally efficient approach** for this problem at **fine-tuning** time?

Always segment **Excitement -> Excite/ment**

- Deterministic segmentation
 - * Byte-pair encoding (BPE; Sennrich et. al. 2016)
 - * Unigram language model (ULM; Kudo et. al. 2018)

Background: Subword Segmentation

Samples from segments **Excitement -> Excitement** -> Excite/ment -> Exc/ite/ment

- Probabilistic segmentation
 - * BPE-dropout (Provikov et. al. 2020)
 - * ULM-sample (Kudo et. al. 2018)

Background: Subword Segmentation

- * Simply use probabilistic segmentation during training time
- * Has only been applied in NMT to improve model performance and robustness

Background: Subword Regularization

Subword Regularization for Cross-lingual Transfer

- * We propose to use SR at fine-tuning time of multilingual pertained models
- * It's a simple method but could make the model more accommodating to segmentation disparities in different languages
- * However, might cause segmentation discrepancy between pretraining and fine-tuning

- * Use both deterministically and probabilistically segmented inputs
- * Enforce the prediction consistency between the two inputs

ically segmented inputs n the two inputs

* Deterministic seg. CE: maximizes the benefit of pretraining

* Probabilistic seg. CE: allows the model see different segmentations

* robustness to segmentation of multilingual data

Consistency loss: enforces the model to make consistent prediction, which improves the

Experiments

- * XTREME tasks (Hu et. al. 2020)
 - * Tagging: NER
 - Classification: XNLI, PAWS-X
 - * QA: XQuAD, MLQA
- * Model
 - * mBERT
 - * XLM-R base, large

Results

- * Removing any of the components hurts performance

Ablations

* Det. Seg CE has large effect on QA probably because prob. seg clashes with span extraction

Latin vs. non-Latin script

Figure. Improvements over baseline for Latin vs. non-Latin languages

Both MVR and SR improve more for non-Latin languages

Effect on over-segmentation

* MVR tends to improve more for words segmented into large number of pieces

Figure. XLM-R large gains over NER baseline

Effect of consistency loss

- Consistency loss helps examples with higher entropy •
- * Label smoothing effect: calibrate the two predictions against each other

Figure. mBERT gains over NER baseline

Effect of consistency loss

Baseline dist. to ensemble

Figure. Full MVR is closer to ensemble distribution

- SR models
- * Ensemble effect: Consistency loss shifts model prediction closer to the ensemble

* Languages colored by the method leading to closer distribution to the ensemble of baseline and

Effect on English

* SR sometimes harm the performance of English, especially on XLM-R large * MVR generally improves over the baseline and SR on English

Figure. Gains of MVR and SR for English

Conclusion

- * Deterministic word segmentation is **sub-optimal** for multilingual pretraiend models
- * Simple subword regularization at fine-tuning can improve performance * Multi-view Subword Regularization further brings consistent improvements

- * Questions/comments: <u>xinyiw1@cs.cmu.edu</u>

* Code: <u>https://github.com/cindyxinyiwang/multiview-subword-regularization</u>

