## Balancing Training for Multilingual Neural Machine Translation

Xinyi Wang, Yulia Tsvetkov, Graham Neubig



Language Technologies Institute



# Multilingual Training



- Resource efficient, easy to deploy
- Accuracy benefit from cross-lingual transfer

**Carnegie Mellon University** 

### Multilingual Data are Imbalanced



Need to upsample LRL data

Data Source: Wikipedia articles from different languages

## Heuristic Sampling of Data



- Used in SOTA Multilingual BERT (Conneau et al. 2019) and Multilingual NMT (Arivazhagan et al. 2019, Aharoni et al., 2019)
- Can we **learn** the data sampling strategy directly?

Picture From: Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges, Arivazhagan et. al. 2019

## **Differentiable Data**

Learn a data sampling strategy



# Selection

- A general purpose ML method to learn weighting of training data to optimize a separate held-out data (Wang et al. 2019)
- Learns data scorer  $P(x, y; \psi)$  to minimize dev loss  $J(\theta; D_{dev})$
- Main idea: scorer should up-weight data with similar gradient as the dev data

$$R(x, y; \theta) \approx \cos \left[ \nabla_{\theta} \left( J(\theta_t, D_{\mathsf{dev}}) \right), \underbrace{\nabla_{\theta} \mathscr{E}(x, y; \theta_{t-1})}_{\mathsf{dev}} \right]$$

dev gradient

train gradient

## DDS for Multilingual Data Usage



• Existing Approach: temperature based heuristic sampling

$$P_D(i) = \frac{\left|D_{\text{train}}^i\right|^{1/\tau}}{\sum_{k=1}^n \left|D_{\text{train}}^k\right|^{1/\tau}}$$

- How to use DDS?
  - Directly parameterize data scorer over the standard dataset sampling distribution

$$P_D(i;\psi) = e^{\psi_i} / \sum_{k=1}^n e^{\psi_k}$$

Optimize over the multilingual dev set

# MultiDDS



• Update Model

$$\theta_{t} \leftarrow \theta_{t-1} - \nabla_{\theta} \mathbb{E}_{i \sim P_{D}(i; \psi)} \left[ \ell(D_{\text{train}}^{i}; \theta) \right]$$

Update Scorer

 $\psi_{t+1} \leftarrow \psi_t + \nabla_{\psi} R(i;\theta) \cdot \log P(i;\psi)$ 

Effect of  $D_{\text{train}}^{i}$  on all languages  $R(i; \theta_{t}) \approx \int_{0}^{1} \int_{0}^{1} dt$ 

$$\begin{array}{c|c} \cos \left( \begin{array}{c} \frac{1}{n} \sum_{k=1}^{n} \nabla_{\theta} J(\theta_{t}, D_{\mathsf{dev}}^{k}) \\ \underbrace{\frac{1}{n} \sum_{k=1}^{n} \nabla_{\theta} J(\theta_{t}, D_{\mathsf{dev}}^{k})}_{\mathsf{train gradient}} \end{array} \right), \underbrace{\nabla_{\theta} J(\theta_{t-1}, D_{\mathsf{train}}^{i})}_{\mathsf{train gradient}} \end{array}$$

# Stabilizing the Reward

$$R(i,\theta) = \cos\left(\frac{1}{n}\sum_{k=1}^{n} \nabla_{\theta} J(\theta_{t}, D_{\mathsf{dev}}^{k}), \nabla_{\theta} J(\theta_{t-1}, D_{\mathsf{train}}^{i})\right)$$

- Aggregate dev gradient, then calculate cosine alignment
  - The reward to update scorer has large variance when number of dev sets is large
- **MultiDDS-S**: trick to stabilize the reward  $R(i,\theta) \approx \frac{1}{n} \sum_{i=1}^{n} \cos\left(\nabla_{\theta} J(\theta_{t}, D_{dev}^{k}), \nabla_{\theta} J(\theta_{t-1}, D_{train}^{i})\right)$  Calculate cosine distance for each
  - Calculate cosine distance for each dev set, then aggregate the alignment

Avoids high variance in aggregated gradient Gradients of different languages won't cancel out

# **Experiment Setup**

- Dataset: Multilingual TED Talks (Qi et al. 2018)
- Two sets of languages
  - Related: 4 LRLs (Azerbaijani: aze, Belarusian: bel, Glacian: glg, Slovak: slk) and a related HRL for each LRL (Turkish: tur, Russian: rus, Portuguese: por, Czech: ces)
  - Diverse: picked without consideration for relatedness (Bosnian: bos, Marathi: mar, Hindi: hin, Macedonian: mkd, Greek: ell, Bulgarian: bul, French: fra, Korean: kor)
- Two NMT settings
  - Many-to-One (M2O)
  - One-to-Many (O2M)

# Main Results



- Baselines: there is no consistently strong strategy
- MultiDDS consistently outperforms the baseline in all settings

Figure plots performance difference from Uniform sampling

## Prioritizing What to Optimize

- Prior work only focused on average performance
- What if we care about certain languages more?
- Fine-tune after 10 epochs using different aggregation methods
  - **Regular**: average performance
  - Low (egalitarian system): prioritize low-performing languages
  - High (specialized system): prioritize high-performing languages

#### Carnegie Mellon University

## Prioritizing What to Optimize

|      | Setting                        | Baseline           | Mu<br>Regular  | ltiDDS-S<br>Low | High           |
|------|--------------------------------|--------------------|----------------|-----------------|----------------|
|      | M2O<br>O2M                     | 26.68<br>17.94     | 27.00<br>18.24 | 26.97<br>17.95  | 27.08<br>18.55 |
| BLEU | 0.25<br>0.00<br>-0.25<br>-0.50 | P bos nikel eil bo |                | low<br>high     | kd eil bul fre |

- MultiDDS of three different priorities always outperform the baseline in terms of average BLEU
- MultiDDS successfully optimizes for different priorities

### Effect of Stabilized Reward



| Mathad                 | M2O            |              | <b>O2M</b>     |              |
|------------------------|----------------|--------------|----------------|--------------|
| Method                 | Mean           | Var.         | Mean           | Var.         |
| MultiDDS<br>MultiDDS-S | 26.85<br>26.94 | 0.04<br>0.02 | 18.20<br>18.24 | 0.05<br>0.02 |

- Reward of MultiDDS-S has less variance
- MultiDDS-S leads to smaller variance in model performance

# **Future Directions**

- Extend to other multilingual tasks other than NMT
- Clearly define and experiment with other multilingual optimization objectives other than average performance

Thanks for listening! Additional questions can be emailed to <u>xinyiw1@cs.cmu.edu</u> Link to code: <u>https://github.com/cindyxinyiwang/fairseq/tree/multiDDS</u>