

Efficient Test Time Adapter Ensembling for Low-resource Language Varieties

Xinyi Wang¹ Yulia Tsvetkov² Sebastian Ruder³ Graham Neubig¹

- 1. Language Technologies Institute, CMU
- 2. Paul G. Allen School of Computer Science & Engineering, University of Washington
- 3. DeepMind

Adapters for Cross-lingual Transfer

Language/task adapters

- Let *M* be the pretrained model
- Then we can use $\langle T_i, Lang_i, M \rangle$ to do zero-shot inference on any language $Lang_i$ on task T_i

Supporting Language Varieties

7000+ languages in the world

AdapterHub

Currently only supports 50 languages

How are you? — English

How you dey? ---- Nigerian Pidgin

Language ID is hard for low-resource languages

https://adapterhub.ml/ Language ID in the wild: Unexpected challenges on the path to a thousand language web text corpus. (Caswell et al. 2020)

Adapters for Unseen Language Variety

Test: Task data in **unseen** language varieties Lang,

* What if we encounter a new language variety that does not have a language adapter? * We found using adapter from the related language is not competitive * Can we adapt to unseen language varieties at **test time**?

Ensemble of Language Adapters

Test: Task data in **unseen** language variety Lang,

* Equal weighting of related language adapters and source language adapters

Entropy Minimized Ensemble of Language Adapters

Test: Task data in unseen language variety Lang,

* Optimize α_i to minimize test entropy $H(x; \alpha)$

r L+1
sk
ensemble
α_3^{\dagger}
ng 2 Lang 3
ver L

Entropy Minimized Ensemble of Language Adapters

Test: Task data in unseen language variety Lang.

* Optimize α_i to minimize test entropy $H(x; \alpha)$

r L+1
sk
ensemble
α_3
ng 2) (Lang 3
ver L

* Tasks

* NER/POS tagging

Languages (3 groups of related language)

Test Languages

Marathi, Bengali, Tamil

Faroese, Norwegian, Denmark

Belarusian, Ukrainian, Bulgarian

Experiment & Results

Adapter Languages

Hindi, Arabic, English

Icelandic, German, English

Russian, English

- Ensemble performs much better than using any single language adapter
- * 1 step of EMEA already performs better than Ensemble on NER
- * 10 steps of EMEA further improves the performance

Conclusion and Limitation

NLP models should be adaptive to personalized language varieties
We propose a test time adaptation algorithm for language varieties
Future work: Curate high quality dataset for language varieties
Future work: Reduce inference cost for test time adaptation algorithms

Code: https://github.com/cindyxinyiwang/emea Contact: xinyiw1@cs.cmu.edu