Optimizing Data Usage via Differentiable Rewards

Xinyi Wang^{*}, Hieu Pham^{*}, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, Graham Neubig

*: equal contribution

Jaime G. Carbonell (1953 - 2020)

REMEMBERING OUR CO-AUTHOR

Motivation

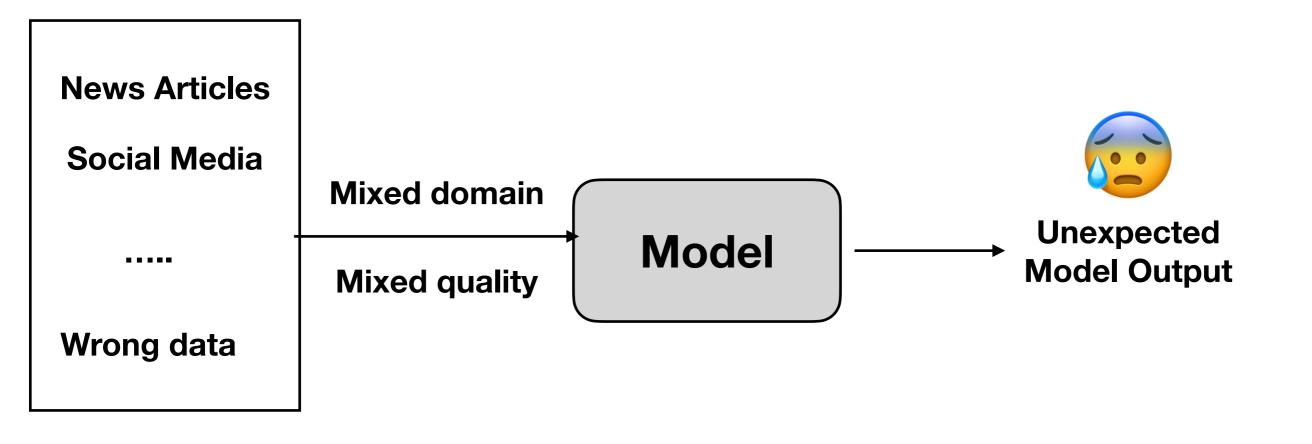
• Mismatch in training data distribution and real distribution:

We want:
$$\theta^* = argmin_{\theta} \mathbb{E}_{x, y \sim P(X, Y)}[\ell(x, y; \theta)]$$

But we do:
$$\theta^* = argmin_{\theta} \mathbb{E}_{x, y \sim Uniform(D_{train})}[\ell(x, y; \theta)]$$

• Many things can go wrong in D_{train}

Motivation



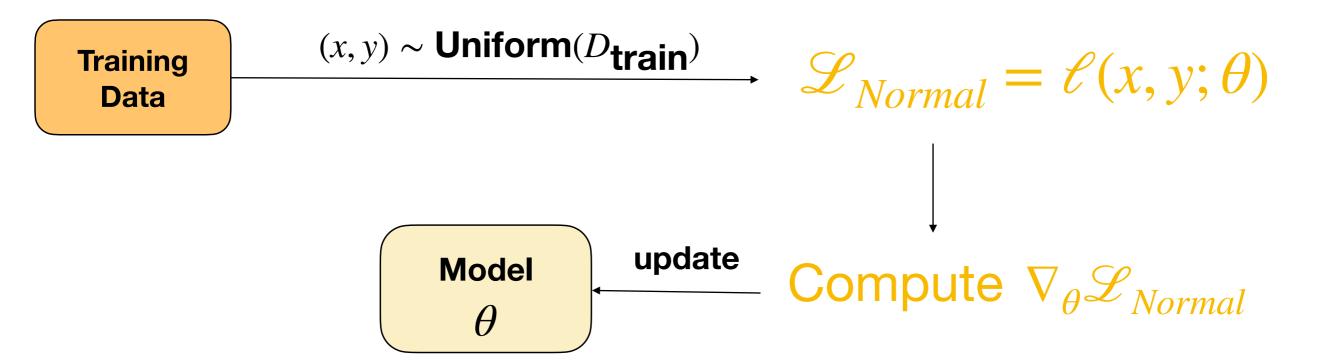
 Deep learning models are sensitive to the domain/quality of training data

Existing methods

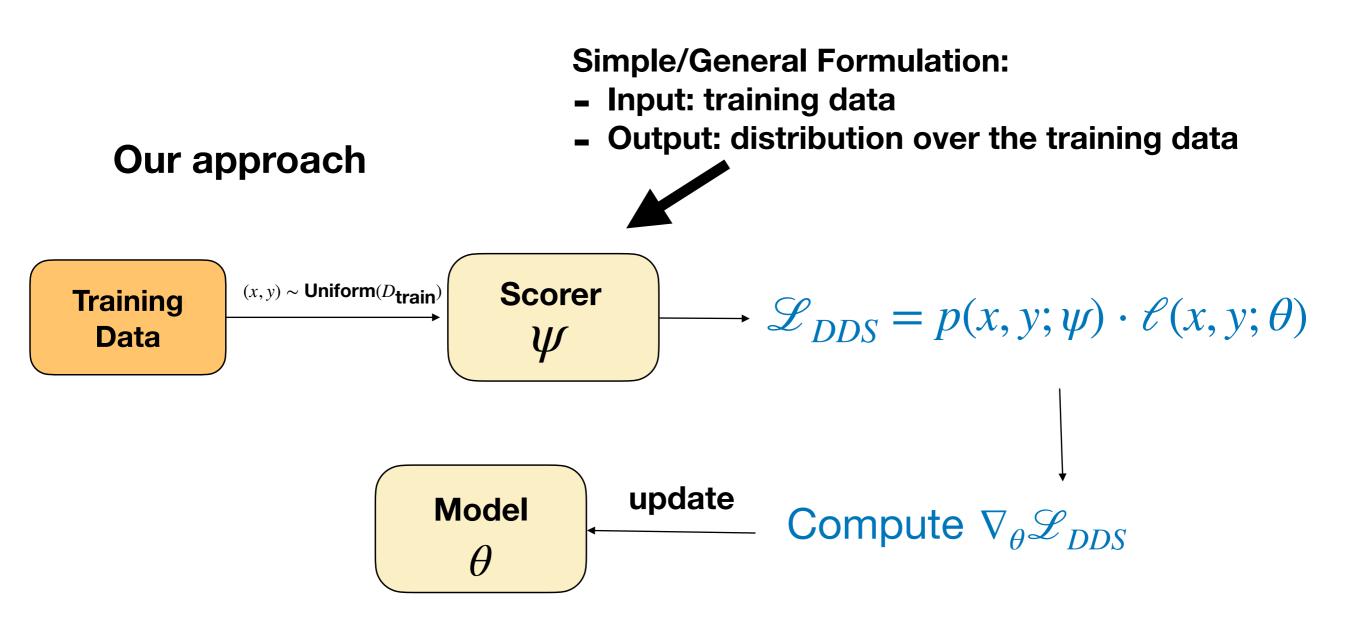
- Data filtering/curriculum learning based on hand-designed heuristics
- Learning the data usage schedule for **specific applications**
 - Noisy data for classification (Jiang et al.)
 - Learning curriculum for NMT (Kumar et al.)
- Teacher-student framework (Fan et al.)
 - Trains a teacher data selector for multiple runs based on student network's final dev set performance
 - Very sparse/unstable feedback at the end of training, requires multiple training runs to train the teacher

Learning to optimize data usage

Standard Training



Learning to optimize data usage

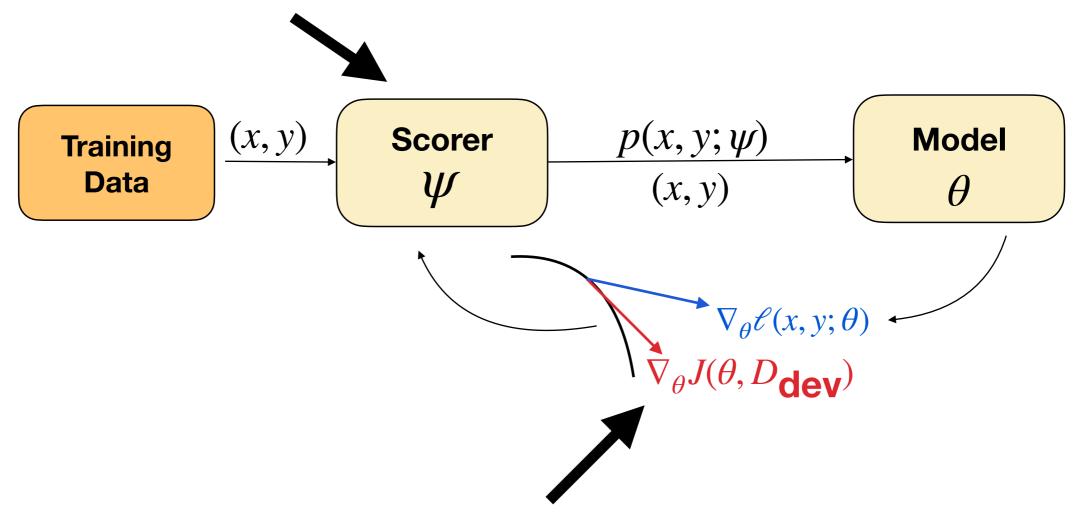


Hope: $p(x, y; \psi)$ makes the training data distribution closer to the real distribution

Differentiable Data Selection

Simple/General Formulation:

- Input: training data
- Output: distribution over the training data



Reward: gradient alignment with the dev data

Deriving the Rewards Via Direct Differentiation

• The gradient alignment reward can be derived as a solution of a bi-level optimization problem (Colson et. al.)

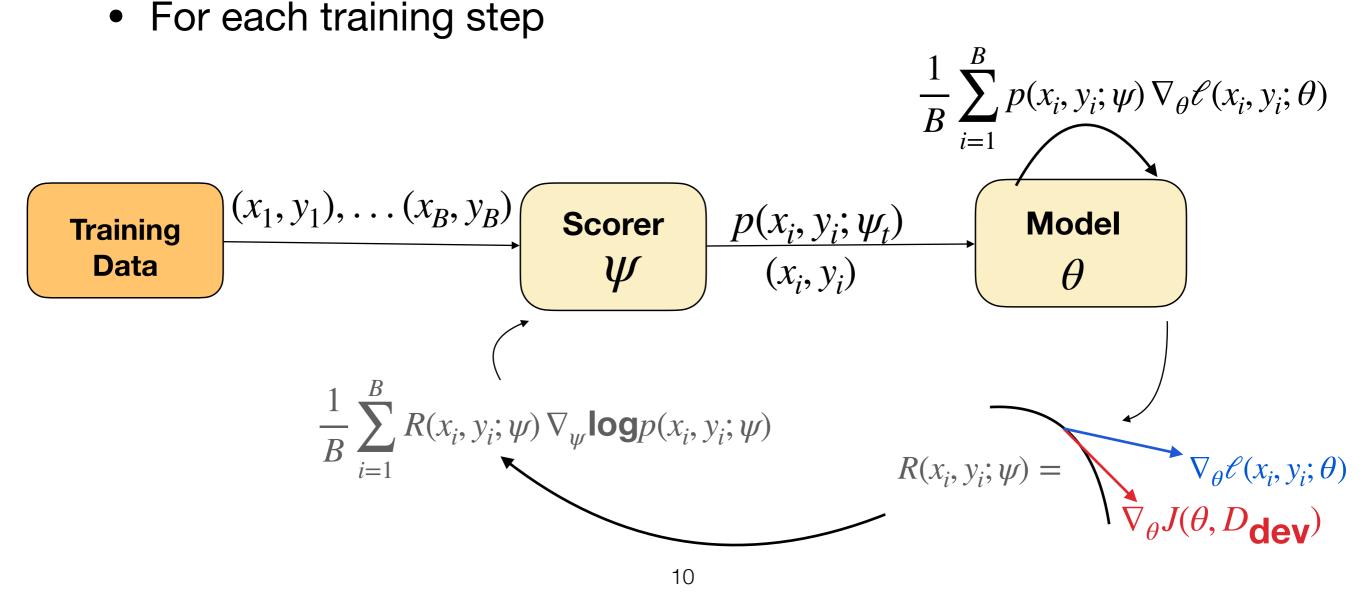
$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{x, y \sim P(X, Y; \psi)} [\ell(x, y; \theta)]$$
$$\psi^* = \operatorname{argmin}_{\psi} J(\theta^*(\psi), D_{\mathsf{dev}})$$

Chain rule and Markov assumption

 $\nabla_{\psi} J(\theta_{t}, D_{\mathsf{dev}}) \approx - \mathbb{E}_{x, y \sim P(X, Y; \psi)} [\underbrace{\nabla_{\theta} J(\theta_{t}, D_{\mathsf{dev}})^{\top} \nabla_{\theta} \mathscr{E}(x, y; \theta_{t-1})}_{\mathsf{gradient alignment}} \nabla_{\psi} \mathsf{log} P(x, y; \psi)]$

DDS for Image Classification

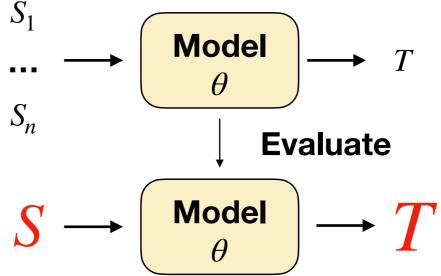
- Generic classification, applicable to a variety of tasks
- Given Dtrain, Ddev, find the optimal parameters θ^*



Carnegie Mellon University

DDS for Multilingual Neural Machine Translation

- Given $D_{\text{train}} = (S_1 T, ..., S_n T)$
- find θ^* that translates from *S* to *T* where $D_{\text{dev}} = S T$



- Several design choices for the specific problem
 - Scorer defined over training source languages
 - Directly sample data according to the scorer
 - Only update scorer once in a while during training

Dataset and Setup

Image Classification

- CIFAR10, ImageNet
- First 10%, Full Dataset

Multilingual NMT

- 58-languages-to-English TED dataset
- Train on 8 pairs of languages
 - Evaluate model on 4 low-resource languages (LRL) Azerbaijani (aze), Belarusian (bel), Galician (glg), and Slovak (slk)
 - The other 4 are their corresponding related high-resource languages (HRL) Turkish (tur), Russian (rus), Portugese (por), and Czech (ces)

Baselines and Ours

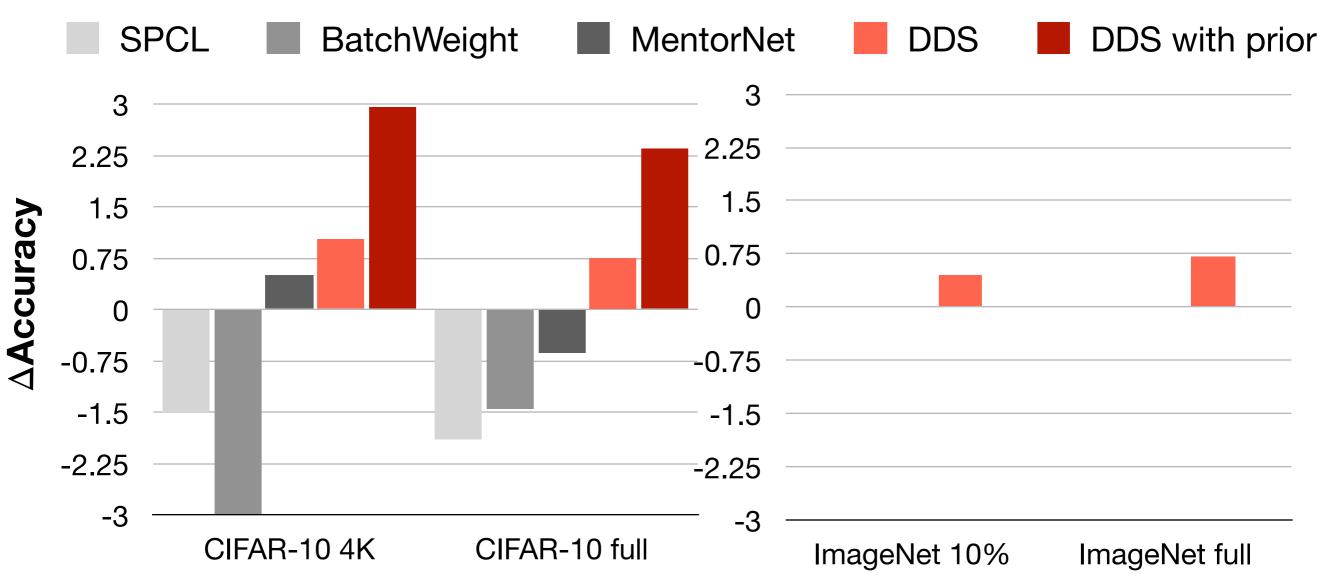
• Baselines

- Uniform
- SPCL (Jiang et al.): dynamically update the training curriculum
- Other data selection methods
 - Classification: BatchWeight (Ren et al.), MentorNet (Jiang et al.)
 - NMT: Related (Neubig & Hu), TCS (Wang et al.)

• Ours

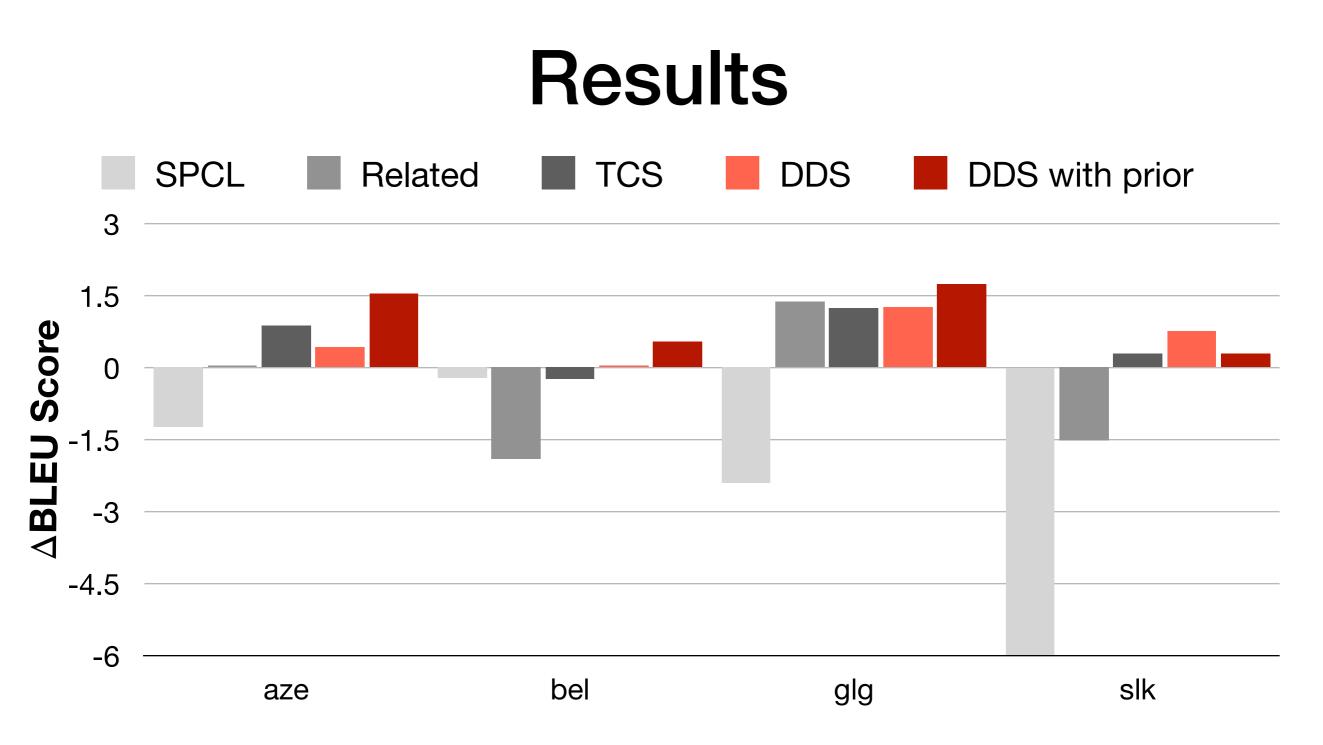
- DDS
- DDS with prior knowledge
 - Classification: Retrained DDS
 - NMT: TCS+DDS

Results



- DDS performs the best of all strategies
- Adding a prior to DDS further improves

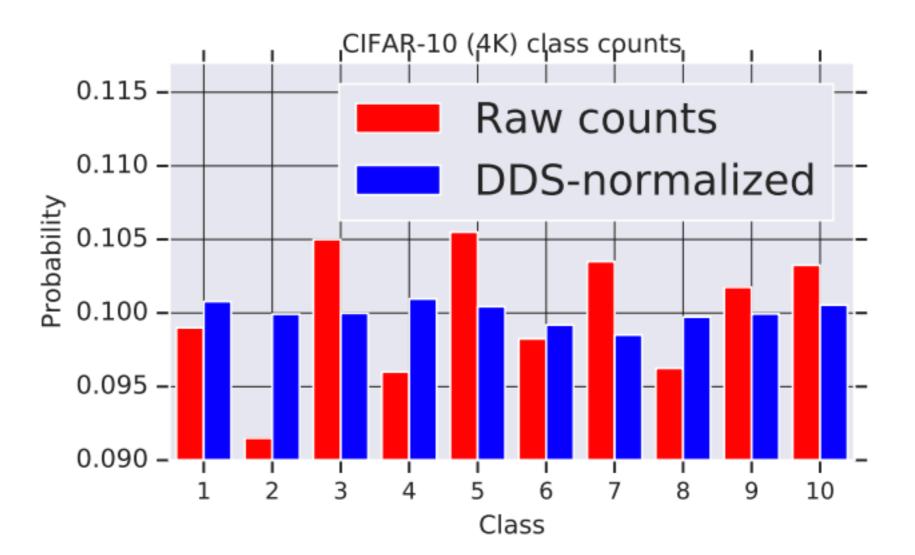
Figure: difference from Uniform sampling ¹⁴



- SPCL is not competitive: ignores relevance to dev set
- DDS performs the best for all settings

Figure: difference from Uniform sampling ¹⁵

Why does DDS work?: Learns to rebalance the class distribution



Why doe DDS work: Assigns higher scores to images with clearer content

Welsh springer spaniel

Why does DDS work: Learns to upweight the most related language

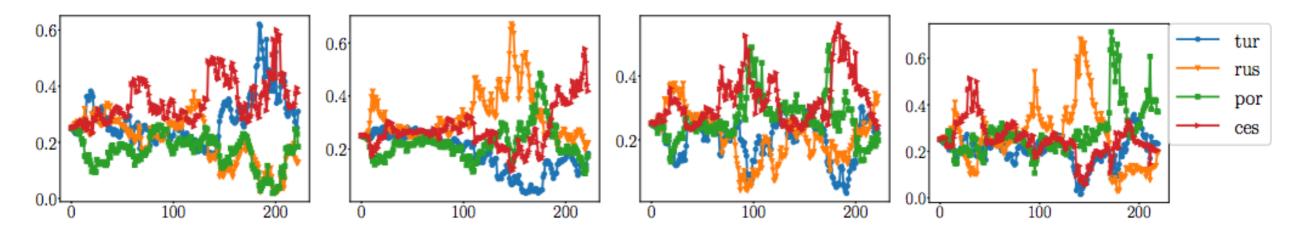


Figure 5: Language usage for DDS by training step. From left to right: aze, bel, glg, slk.

 Data distribution changes significantly over the course of training

Conclusion

- We present Differentiable Data Selection, which optimizes a data scorer network during training with an intuitive reward function
- Formulate two algorithms under DDS for two realistic and very different tasks
- DDS is a flexible framework that is potentially useful for many other tasks

Thanks for listening!

Questions can be emailed to: <u>xinyiw1@cs.cmu.edu</u> or hyhieu@cmu.edu