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Suppose we want to train a model to translate English into Chinese Notations
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Since T is generated by the backward model, we
have the dependency 0, = 0:(1))
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Using second-ordered gradients, we can derive:

Limitations of Back-Translation

e Backward model’s is constrained by the amount of parallel data
e It is unclear how to sample pseudo parallel data to train the best
forward model.

az-en be-en gl-en sk-en en-de en-fr

Meta Back-Translation (Meta BT) resolves both limitations.

Meta BT avoids overfitting and underfitting

How to update the backward model?
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