Google Research

Suppose we want to train a model to translate **English** into **Chinese**

Back-Translation (BT)

• Very effective for using large monolingual corpora, but...

Limitations of Back-Translation

- Backward model's is constrained by the amount of parallel data
- It is unclear how to sample pseudo parallel data to train the best forward model.

Meta Back-Translation (Meta BT) resolves both limitations.

Step 1: Train a backward model using all available parallel data.

High-level Intuition

Step 2: Use the backward model to generate pseudo for a forward model, *but*:

• At each step, measure the forward model's cross-entropy on a *Meta Validation Set* and use it to update the backward model.

Intuition: the backward model should generate pseudo data so that by learning on such data, the forward model generalizes well

Meta Back-Translation

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, Quoc V. Le {hyhieu,zihangd,qizhex,thangluong,qvl}@google.com

Notations

del?

Õ E

2

backwa

the

ate

 $\overline{\mathbf{O}}$

dn

t0

How

ψ_t	backward model's params at step t
$ heta_t$	forward model's params at step t
$\eta_ heta,\eta_\psi$	learning rates for θ , ψ
(\widehat{x},y)	pseudo source and target sentences
$J(heta;\widehat{x},y)$	cross-entropy for θ on (\hat{x}, y)
$J_{ m MetaVal}(heta)$	cross-entropy for θ meta validation data

Update the forward model's params:

 $\theta_t = \theta_{t-1} - \eta_\theta \nabla_\theta J(\theta; \hat{x}, y)$

Since \widehat{x} is generated by the backward model, we have the dependency $\theta_t = \theta_t(\psi)$ This means that the meta validation loss depends on ψ

 $J_{\text{MetaVal}}(\theta_t) = J_{\text{MetaVal}}(\theta_t(\psi))$

Using second-ordered gradients, we can derive:

 $\nabla_{\psi} J_{\text{MetaVal}}(\theta_{t})$ $\approx \left[\nabla_{\theta} J_{\text{MetaVal}}(\theta_{t})^{\top} \cdot \nabla_{\theta} J(\theta_{t-1}; \hat{x}, y) \right]$ $\cdot \nabla_{\psi} \log P(\hat{x}|y; \psi)$

This is an efficient approximation of ∇_{ψ} . Using it, we update the backward model with gradient descent.

Multilingual Training

Problem: The backward model's quality depends on the amount of parallel training data.

Solution: Since the backward model will continue training along with the forward model, we can:

1. Train the backward model on a related language with more data.

• Examples (low-high): az-tr, be-ru, gl-pl, sl-cs

2. Adapt the backward model throughout the forward model's learning.

Meta BT avoids overfitting and underfitting

Figure. MBT leads to higher training PPL but better better dev BLEU

Figure. MBT helps underfitting by decreasing the diversity of BT samples

Meta BT samples data closer to meta validation set

References

R. Sennrich, B. Haddow, A. Birch. *Improving neural machine translation models with monolingual data*. ACL 2016
S. Edunov, M. Ott, M. Auli, David Grangier. *Understanding back-translation at scale*. EMNLP 2018
Y. Xia, D. He, T. Qin, L. Wang, N. Yu, TY. Liu, WY. Ma. *Dual Learning for Machine Translation*. NIPS 2016